Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In recent years, mechanical metamaterials have been developed that support the propagation of an intriguing variety of nonlinear waves, including transition waves and vector solitons (solitons with coupling between multiple degrees of freedom). Here we report observations of phase transitions in 2D multistable mechanical metamaterials that are initiated by collisions of soliton-like pulses in the metamaterial. Analogous to first-order phase transitions in crystalline solids, we observe that the multistable metamaterials support phase transitions if the new phase meets or exceeds a critical nucleus size. If this criterion is met, the new phase subsequently propagates in the form of transition waves, converting the rest of the metamaterial to the new phase. More interestingly, we numerically show, using an experimentally validated model, that the critical nucleus can be formed via collisions of soliton-like pulses. Moreover, the rich direction-dependent behavior of the nonlinear pulses enables control of the location of nucleation and the spatio-temporal shape of the growing phase.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            In this Letter, we investigate the propagation of nonlinear pulses along the free surface of flexible metamaterials based on the rotating squares mechanism. While these metamaterials have previously been shown to support the propagation of elastic vector solitons through their bulk, here, we demonstrate that they can also support the stable propagation of nonlinear pulses along their free surface. Furthermore, we show that the stability of these surface pulses is higher when they minimally interact with the linear dispersive surface modes. Finally, we provide guidelines to select geometries that minimize these interactions.more » « less
- 
            Domain walls, commonly occurring at the interface of different phases in solid-state materials, have recently been harnessed at the structural scale to enable additional modes of functionality. Here, we combine experimental, numerical, and theoretical tools to investigate the domain walls emerging upon uniaxial compression in a mechanical metamaterial based on the rotating-squares mechanism. We first show that these interfaces can be generated and controlled by carefully arranging a few phase-inducing defects. We establish an analytical model to capture the evolution of the domain walls as a function of the applied deformation. We then employ this model as a guideline to realize interfaces of complex shape. Finally, we show that the engineered domain walls modify the global response of the metamaterial and can be effectively exploited to tune its stiffness as well as to guide the propagation of elastic waves.more » « less
- 
            Abstract This broad review summarizes recent advances and “hot” research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium held on April 25–27, 2022 in Benicássim, Spain. The key goal of the colloquium was to highlight important developments in these areas, particularly new results that emerged during the last two years. This work thus presents a “snapshot” of the state-of-the-art of different nanophononics- and metamaterial-related topics rather than a historical view on these subjects, in contrast to a conventional review article. The introduction of basic definitions for each topic is followed by an outline of design strategies for the media under consideration, recently developed analysis and implementation techniques, and discussions of current challenges and promising applications. This review, while not comprehensive, will be helpful especially for early-career researchers, among others, as it offers a broad view of the current state-of-the-art and highlights some unique and flourishing research in the mentioned fields, providing insight into multiple exciting research directions.more » « less
- 
            Abstract We use a combination of experiments, numerical analysis and theory to investigate the nonlinear dynamic response of a chain of precompressed elastic beams. Our results show that this simple system offers a rich platform to study the propagation of large amplitude waves. Compression waves are strongly dispersive, whereas rarefaction pulses propagate in the form of solitons. Further, we find that the model describing our structure closely resembles those introduced to characterize the dynamics of several molecular chains and macromolecular crystals, suggesting that our macroscopic system can provide insights into the effect of nonlinear vibrations on molecular mechanisms.more » « less
- 
            Abstract We combine experimental, numerical, and analytical tools to design highly nonlinear mechanical metamaterials that exhibit a new phenomenon: gaps in amplitude for elastic vector solitons (i.e., ranges in amplitude where elastic soliton propagation is forbidden). Such gaps are fundamentally different from the spectral gaps in frequency typically observed in linear phononic crystals and acoustic metamaterials and are induced by the lack of strong coupling between the two polarizations of the vector soliton. We show that the amplitude gaps are a robust feature of our system and that their width can be controlled both by varying the structural properties of the units and by breaking the symmetry in the underlying geometry. Moreover, we demonstrate that amplitude gaps provide new opportunities to manipulate highly nonlinear elastic pulses, as demonstrated by the designed soliton splitters and diodes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
